

1 2 3	Contrasting decadal trends of subsurface excess nitrate in the western and eastern North Atlantic Ocean
4	Jin-Yu Terence Yang ^{1,2} , Kitack Lee ^{1*} , Jia-Zhong Zhang ³ , Ji-Young Moon ¹ ,
5	Joon-Soo Lee ⁴ , In-Seong Han ⁴ , and Eunil Lee ⁵
6	
7 8 9	¹ Division of Environmental Sciences and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea.
10 11 12	² State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
12 13 14 15	³ National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, FL 33149, USA.
16 17 18	⁴ Ocean Climate and Ecology Research Division, National Institute of Fisheries Science, Busan 46083, Korea.
19 20 21 22	⁵ Ocean Research Division, Korea Hydrographic and Oceanographic Agency, Busan 49111, Korea.
23 24 25 26 27	*Corresponding author, Kitack Lee, Professor Division of Environmental Sciences and Engineering Pohang University of Science and Technology Phone: +82-54-2792285; fax: +82-54-2798299; e-mail: <u>ktl@postech.ac.kr</u>
28 29 30	Email for other co-authors : Jin-Yu Terence Yang (jyyang@xmu.edu.cn); Jia-Zhong Zhang (jia-zhong.zhang@noaa.gov); Ji- Young Moon (todaud@postech.ac.kr); Joon-Soo Lee (leejoonsoo@korea.kr); In-Seong Han (hisiamataa@korea.kr); Eusiil Las (alaa@korea.kr)

- 31 (hisjamstec@korea.kr); Eunil Lee (elee@korea.kr)
- 32

33 Keywords,

34 anthropogenic nitrogen; excess nitrate; North Atlantic Ocean; climate variability; decadal trend

35 Abstract

36	Temporal variations in excess nitrate (DIN_{xs}) relative to phosphate were evaluated using
37	datasets derived from repeated measurements along meridional and zonal transects in the upper
38	(200–600 m) North Atlantic (NAtl) between the 1980s and 2010s. The analysis revealed that the
39	DIN_{xs} trend in the western NAtl differed from that in the eastern NAtl. In the western NAtl,
40	which has been subject to atmospheric nitrogen deposition (AND) from the USA, the subsurface
41	DIN_{xs} concentrations have increased over the last two decades. This increase was associated with
42	the increase in AND measured along the US east coast, with a mean lag period of 15 years. This
43	time lag was approximately equivalent to the time elapsed since the subsurface waters in the
44	western NAtl were last in contact with the atmosphere (the ventilation age). Our finding provides
45	an evidence that the DIN_{xs} dynamics in the western NAtl in recent years has been affected by
46	anthropogenic nitrogen inputs, although this influence is weak relative to that in the North
47	Pacific. In contrast, a decreasing trend in subsurface DIN_{xs} was observed after the 2000s in the
48	eastern NAtl, particularly in the high latitudes. This finding may be associated with a possible
49	decline of tropical N_2 fixation and the weakening of the Atlantic meridional overturning
50	circulation, although more time-resolved data on nutrients and meridional circulation are needed
51	to assess this hypothesis. Our results highlight the importance of both anthropogenic and climate
52	forcing in impacting the nutrient dynamics in the upper NAtl.

54 1. Introduction

55	The supply of reactive inorganic nitrogen ($Nr = NO_y + NH_x$) to the surface ocean is limited
56	in most of the oligotrophic marine environments (Fanning, 1989; Moore et al., 2013; Moore,
57	2016). The addition of Nr will lead to an increase in primary and export production, and
58	eventually an enhancement of carbon sequestration in the ocean interior (Okin et al., 2011;
59	Jickells and Moore, 2015). Anthropogenic nitrogen deposition (AND) to the contemporary ocean
60	is comparable in magnitude to marine biological N2 fixation, which has been thought to be the
61	major external source of Nr to the oligotrophic ocean (Duce et al., 2008; Fowler et al., 2013;
62	Jickells et al., 2017). In particular, AND has been found to enhance phytoplankton productivity
63	in Nr-depleted tropical and subtropical oceans located downwind of continents that are sources
64	of pollutant nitrogen (Kim et al., 2014b; St-Laurent et al., 2017). Any changes in this external
65	source of Nr induced largely by human activities could cause a wide range of ecological and
66	biogeochemical concequences (e.g. Denov et al. 2007; Veng et al. 2016)
00	biogeochemical consequences (e.g., Doney et al., 2007, Tang et al., 2010).
67	The impact of AND on the dissolved inorganic nitrogen concentration (DIN) in seawater
67 68	The impact of AND on the dissolved inorganic nitrogen concentration (DIN) in seawater has recently been assessed in coastal and marginal seas (Kim et al., 2011; Moon et al., 2016), and
67 68 69	The impact of AND on the dissolved inorganic nitrogen concentration (DIN) in seawater has recently been assessed in coastal and marginal seas (Kim et al., 2011; Moon et al., 2016), and in the remote open ocean (Kim et al., 2014a), using historical nutrient concentration datasets.
67 68 69 70	The impact of AND on the dissolved inorganic nitrogen concentration (DIN) in seawater has recently been assessed in coastal and marginal seas (Kim et al., 2011; Moon et al., 2016), and in the remote open ocean (Kim et al., 2014a), using historical nutrient concentration datasets. The analysis of 30 years of data showed that the DIN has increased in marginal seas off the
 67 68 69 70 71 	The impact of AND on the dissolved inorganic nitrogen concentration (DIN) in seawater has recently been assessed in coastal and marginal seas (Kim et al., 2011; Moon et al., 2016), and in the remote open ocean (Kim et al., 2014a), using historical nutrient concentration datasets. The analysis of 30 years of data showed that the DIN has increased in marginal seas off the northeast Asian continent, whereas the dissolved inorganic phosphorus concentration (DIP) has
 67 68 69 70 71 72 	The impact of AND on the dissolved inorganic nitrogen concentration (DIN) in seawater has recently been assessed in coastal and marginal seas (Kim et al., 2011; Moon et al., 2016), and in the remote open ocean (Kim et al., 2014a), using historical nutrient concentration datasets. The analysis of 30 years of data showed that the DIN has increased in marginal seas off the northeast Asian continent, whereas the dissolved inorganic phosphorus concentration (DIP) has remained relatively unchanged over this time period (Kim et al., 2011). For open-ocean areas,
 67 68 69 70 71 72 73 	The impact of AND on the dissolved inorganic nitrogen concentration (DIN) in seawater has recently been assessed in coastal and marginal seas (Kim et al., 2011; Moon et al., 2016), and in the remote open ocean (Kim et al., 2014a), using historical nutrient concentration datasets. The analysis of 30 years of data showed that the DIN has increased in marginal seas off the northeast Asian continent, whereas the dissolved inorganic phosphorus concentration (DIP) has remained relatively unchanged over this time period (Kim et al., 2011). For open-ocean areas, the temporal change in excess nitrate relative to DIP (DIN _{xs} = DIN – $R_{N:P} \times DIP$, where $R_{N:P}$ is
 67 68 69 70 71 72 73 74 	The impact of AND on the dissolved inorganic nitrogen concentration (DIN) in seawater has recently been assessed in coastal and marginal seas (Kim et al., 2011; Moon et al., 2016), and in the remote open ocean (Kim et al., 2014a), using historical nutrient concentration datasets. The analysis of 30 years of data showed that the DIN has increased in marginal seas off the northeast Asian continent, whereas the dissolved inorganic phosphorus concentration (DIP) has remained relatively unchanged over this time period (Kim et al., 2011). For open-ocean areas, the temporal change in excess nitrate relative to DIP (DIN _{xs} = DIN – R _{N:P} × DIP, where R _{N:P} is the average DIN:DIP ratio of 15:1 for deep waters) was estimated using the relationship between
 67 68 69 70 71 72 73 74 75 	The impact of AND on the dissolved inorganic nitrogen concentration (DIN) in seawater has recently been assessed in coastal and marginal seas (Kim et al., 2011; Moon et al., 2016), and in the remote open ocean (Kim et al., 2014a), using historical nutrient concentration datasets. The analysis of 30 years of data showed that the DIN has increased in marginal seas off the northeast Asian continent, whereas the dissolved inorganic phosphorus concentration (DIP) has remained relatively unchanged over this time period (Kim et al., 2011). For open-ocean areas, the temporal change in excess nitrate relative to DIP (DIN _{xs} = DIN – R _{N:P} × DIP, where R _{N:P} is the average DIN:DIP ratio of 15:1 for deep waters) was estimated using the relationship between DIN _{xs} in a particular water parcel and the chlorofluorocarbon (CFC)-12-derived ventilation age

77	biological processes (i.e., production and microbial oxidation of organic matter) operate at a
78	DIN:DIP ratio of 15:1 and thus do not change DIN_{xs} . Changes in seawater DIN_{xs} only occur
79	when either N input (i.e., AND and N2 fixation) or N loss (i.e., denitrification) occurs. The
80	analysis using this method revealed that the DIN_{xs} has increased in the western North Pacific
81	Ocean (NPO) since the 1970s (Kim et al., 2014a).
82	The addition of Nr to the North Atlantic Ocean (NAtl), which is located downwind from
83	North America, has more than doubled since 1986 (Galloway et al., 1996). The increasing
84	addition of Nr may lead to an increase in DIN_{xs} in the NAtl (Zamora et al., 2010). However, it
85	has been argued that N_2 fixation is a more likely cause of the higher subsurface DIN_{xs} in the
86	NAtl (Gruber and Sarmiento, 1997; Bates and Hansell, 2004). Differentiating the contributions
87	of N_2 fixation and AND is not straightforward because both processes leave similar
88	biogeochemical signals in seawater, including a high DIN:DIP ratio and low nitrogen isotope
89	composition (Hastings et al., 2003; Knapp et al., 2010; Yang et al., 2014). In addition to these
90	two processes, climate variations (commonly expressed as the North Atlantic Oscillation Index)
91	can concurrently influence the nutrient dynamics in the NAtl (Bates and Hansell, 2004; Singh et
92	al., 2013). As a result, the processes causing the change in the subsurface DIN_{xs} signal in the
93	NAtl remain unresolved. This knowledge gap needs to be filled to improve understanding of the
94	marine nitrogen cycle (Gruber, 2008).
95	The present study was designed to explore the occurrence and rate of decadal change in
96	DIN_{xs} (ΔDIN_{xs} in μ mol kg ⁻¹ decade ⁻¹) in the subsurface NAtl, as well as the explanations for
97	ΔDIN_{xs} , based on repeat measurements of nutrients and other oceanographic parameters made
98	over the past three decades or longer.
99	

100 2. Materials and methods

- 101 **2.1. Data**
- 102 Historical data on temperature, salinity, and the concentrations of nitrate, nitrite, phosphate
- and oxygen used in this study have been collected as parts of the Transient Tracers in the Ocean
- 104 (TTO), the World Ocean Circulation Experiment (WOCE), the Climate Variability CO₂ Repeat
- 105 Hydrography (CLIVAR), and the Global Ocean Ship-Based Hydrographic Investigations (GO-
- 106 SHIP) programs. Analysis of nutrient data was based only on concentrations greater than 0.1
- 107 μ mol kg⁻¹ for DIN and 0.01 μ mol kg⁻¹ for DIP. These concentration levels approximate the
- 108 detection limits of DIN and DIP for the analytical methods used in the field observations (Zhang
- 109 et al., 2001; Hydes et al., 2010). The data used in our analysis are available at
- 110 https://www.nodc.noaa.gov/ocads/oceans/ (the Global Ocean Data Analysis Project Version 2,
- 111 GLODAPv2 product and CLIVAR database).
- 112 Data analysis was primarily focused on three meridional (A22, A20, and A16N) transects
- 113 in the NAtl (Fig. 1). A zonal transect (A05) was also included for comparison. All four transects
- 114 used in the study are located downwind of the North American continent, which is a major
- source region of anthropogenic nitrogen (Fig. 1). Each of these transects was sampled 3 or 4
- times during the past 30 years (Table S1). To extend temporal data coverage in the analysis,
- 117 historical data obtained from locations adjacent to the four study transects were included in the
- analysis. Moreover, the repeat measurements along transect A22 occurred on slightly different
- tracks, particularly in the Caribbean Sea and in the northern end of the transect. We therefore
- 120 excluded data for areas south of Puerto Rico (~18.5°N) and north of 36°N, where the distance
- 121 between the location of repeat measurements exceeded 2° longitude. Data obtained south of
- 122 20°N along A16N and south of 15°N along A20 were also excluded from the analysis, because

these regions are considerably influenced by the water masses originated from the equatorial
upwelling region (Hansell et al., 2004), and any change in the intensity of upwelling could bias
our analysis of changes in DIN_{xs} . To make datasets collected in different years consistent, an
inverse analysis of repeated measurements made at the same locations was performed to estimate
measurement biases. Any biases found were accounted for by applying adjustment factors to the
original datasets. The adjusted datasets were reported in the GLODAPv2 product and CLIVAR
database (Key et al., 2015; Olsen et al., 2016).
The datasets from the GLODAPv2 and CLIVAR did not have systematic biases (Table
S1). To account for any small discrepancies that may exist among the various datasets collected
on the 4 transects, we adjusted the DIN and DIP concentrations based on the assumption that the
physical and chemical properties in deep waters of the tropical and subtropical NAtl (south of
50°N) did not change on decadal time scales (Figs. S1 and S2; see details in Text S1). The mean
corrections were found to be 0.04 \pm 0.03 μ mol kg ⁻¹ for DIN and 0.006 \pm 0.004 μ mol kg ⁻¹ for
DIP, corresponding to their adjustment factors mostly less than 1.5% (Table S2 and Fig. S3).
These corrections fell within the detection limits for DIN and DIP, and were an order of
magnitude smaller than the subsurface ΔDIN_{xs} signals (see section 3.1). The finding that the
subsurface ΔDIN_{xs} signals were considerably greater than the detection limit of DIN is a strong
indication that our data adjustments probably did not influence the temporal trend of DIN_{xs} . It
also suggests that our method can extract the decadal trends of DIN_{xs} from less time-resolved
datasets, as has successfully been used in previous studies (Zhang et al., 2000; Ríos et al., 2015;
Woosley et al., 2016).

144 2.2. Relative abundance of DIN over DIP (DIN_{xs}) in water parcels

145	We calculated the DIN surplus or deficit relative to DIP in each seawater sample (i.e. the
146	deviation of the DIN:DIP ratio from that in deep water) by calculating DIN_{xs} (Fig. 2). This
147	calculation was performed in the upper 1500 m; and the ΔDIN_{xs} signals between GO-SHIP and
148	WOCE time periods were also evaluated using data obtained from the subsurface layer (200-600
149	m) because the majority of DIN_{xs} signals derive from this layer and hence any changes would be
150	expected to be more marked (see the next section and the ΔDIN_{xs} signals at 1200–1500 m for
151	reference in Fig. 2). In addition, the effect of seasonal variations on DIN_{xs} signals at this depth
152	layer is generally insignificant, because seasonal variations are largely confined to waters
153	shallower than the climatological winter mixed layer (down to 200 m depth). Based on analysis
154	of data obtained from the BATS site, seasonal variations in subsurface (the target water depth
155	range) mean DIN _{xs} values were $< 0.1 \ \mu mol \ kg^{-1}$ (Note that nutrient data at BATS are available at
156	http://batsftp.bios.edu/ BATS/bottle/bats_bottle.txt).
157	The values for ΔDIN_{xs} and nutrients in the water column could be biased because of
158	mixing of water masses having different DIN_{xs} concentrations, and different nitrogen to
159	phosphorus ratios associated with organic matter oxidation during various observation periods.
160	To minimize biases caused by these natural processes, we examined changes in potential
161	temperature θ , salinity and AOU along the potential density surfaces σ_{θ} (corresponding to 200–
162	600 m where the DIN _{xs} signals are the largest) at 5° -15° latitude or longitude intervals
163	representing average regional variations along each transect. We found that the θ and salinity of
164	a water mass occupying any given density surface did not change between repeat occupations (p
165	> 0.05, Student's t-test and ANOVA with Games-Howell test), except for slightly lower θ and
166	salinity since 2000s in the subpolar region (north of 45°N) along A16N (Figs. S4 and S5). This
167	finding is a strong indication that biases in ΔDIN_{xs} from the mixing of different water masses

- 168 were negligible in the subtropical regions over the observation periods (approximately 30 years).
- 169 In contrast, we found slight differences in ΔAOU among a few of selected reoccupations (not
- 170 shown). To remove the contribution of DIN and DIP from oxidation of organic matter,
- 171 adjustment of the nutrient concentrations was made by using the DIP:DIN:O₂ remineralization
- 172 ratio of 1:15:(-160) derived from data along the $\sigma_{\theta} = 27.0$ horizon in the NAtl (Takahashi et al.,
- 173 1985; Anderson and Sarmiento, 1994). The estimated DIN:DIP ratio for remineralization of
- 174 organic matter was in the range 15–18 (Takahashi et al., 1985; Anderson and Sarmiento, 1994).
- 175 The chosen value of the DIN:DIP ratio for remineralization did not significantly change the
- 176 patterns of ΔDIN_{xs} . Therefore, the ΔDIN_{xs} within the layer of the DIN_{xs} maxima along all
- 177 transects examined were free from biases of either mixing of water masses or changes in
- 178 oxidation of organic matter. For each subregion, DIN_{xs} (or DIP) anomalies indicated individual
- 179 DIN_{xs} (or DIP) values minus the mean DIN_{xs} (or DIP) values from the GO-SHIP dataset (Figs.
- 180 3–5). Note that the positive anomalies indicate higher values than the GO-SHIP data.

181

182 **3. Results and discussion**

183 **3.1. Decadal variations of DIN**_{xs} in the upper North Atlantic Ocean

- High DIN_{xs} values were broadly distributed in the subsurface waters (< 1000 m) in the
- 185 NAtl. In particular, the maximum DIN_{xs} values were found between 200 and 600 m (Fig. 2), and
- 186 were slightly higher in the western basin (an average value of $1.4 \pm 0.3 \,\mu$ mol kg⁻¹ was calculated
- 187 for A22 in 2012) than those in the eastern basin (an average value of $0.8 \pm 0.2 \,\mu$ mol kg⁻¹ was
- 188 calculated for A16N in 2013). Similarly, the west-east gradient in DIN_{xs} was apparent along the
- 189 zonal transect A05 at 24.5°N latitude (Fig. S6).

190	Based on multiple cruises along each transect, changes in DIN_{xs} were discernable over the
191	decadal periods; these changes were most pronounced between 200 m and 600 m (Fig. 2). The
192	rate of ΔDIN_{xs} in the NAtl differed among locations of transects between GO-SHIP and WOCE
193	periods. Specifically, the ΔDIN_{xs} values were mostly positive in the western NAtl (A22 and
194	A20), where they varied from 0.02 to 0.33 μ mol kg ⁻¹ decade ⁻¹ , with the highest rate found at
195	31°N–36°N along A22. In contrast, the ΔDIN_{xs} values became negative in the eastern NAtl
196	(20°N–60°N along A16N), where they ranged from –0.07 to –0.40 μ mol kg ⁻¹ decade ⁻¹ ; the
197	greatest rate of DIN _{xs} decrease was in the subpolar region (north of 45°N). Moreover, the ΔDIN_{xs}
198	values remained close to zero in the intermediate waters (1200–1500 m) in the western and
199	eastern subtropical NAtl (Fig. 2). This observation confirms that the marked changes in DIN_{xs}
200	largely occurred in the subsurface waters.
201	The ΔDIN_{xs} in the NAtl showed geographically distinct patterns after removing the
202	influence of remineralization of organic matter (Fig. 3). We found that the ΔDIN_{xs} within the
203	layer of the DIN_{xs} maximum decreased since 1997 (measurement year) along the transects near
204	the source continent (i.e. the entire transect of A22, and 31°N-36°N along A20) (Figs. 3a and
205	3b), and its rates ranged from 0.19 to 0.33 μ mol kg ⁻¹ decade ⁻¹ (Fig. 2). The trend in DIN _{xs} found
206	at the BATS site is broadly comparable to that found between 31°N and 36°N along A22 (Fig.
207	3a). The rate of increase of DIN _{xs} at the BATS site since the late 1990s (0.40 μ mol kg ⁻¹ decade ⁻
208	¹) was also similar to that observed in the latitude band 31°N–36°N along A22. Such agreement
209	with time series data strengthens our finding derived from less time-resolved datasets.
210	The discernable increase in DIN_{xs} rapidly diminished in the central gyre of the NAtl
211	(15°N–31°N for A20, 20°N–45°N for A16N and A05), where the ΔDIN_{xs} was statistically
212	insignificant ($p > 0.05$, Student's t-test and ANOVA with Games-Howell test; Figs. 3 and S7).

213	Furthermore, the level of DIN_{xs} appeared to decrease at high latitudes in the eastern NAtl (north
214	of 45°N on A16N; Fig. 3c). The trend of decrease has been more pronounced since the 2000s in
215	this region, and occurred concurrently with decreases in temperature and salinity ($p < 0.05$,
216	Student's t-test and ANOVA with Games-Howell test; Figs. S4c and S5c). Our observations
217	indicate that the mechanisms responsible for the ΔDIN_{xs} in the subtropical and subpolar NAtl are
218	likely to differ.
219	3.2 AND influence on the ΔDIN_{xs} in the western North Atlantic Ocean
220	More pronounced increase in the subsurface DIN_{xs} has been observed in recent decades in
221	the western mid-latitude NAtl (Fig. 3), which is subject to considerable AND input from the
222	North American continent. Recent studies suggest that the reduced form of nitrogen entering the
223	NAtl is primarily of marine autochthonous origin, rather than of anthropogenic origin (i.e.
224	atmospheric deposition) (Altieri et al., 2014; Altieri et al., 2016). Thus, this autochthonous
225	reduced nitrogen would not influence seawater DIN_{xs} values. Therefore, we only included the
226	effect of NO _x emissions and deposition (mostly in the forms of NO ₃ ⁻ and HNO ₃ ; hereinafter NO _x
227	is used to represent the major form of AND) on the ΔDIN_{xs} values (Figs. 1 and 5b). From the
228	1970s to the 2010s the NO_x emissions from the USA showed a three-phase temporal transition
229	(EPA, 2000). The NO_x emissions from the USA increased from 1970 to the mid 1980s, and
230	stayed at high levels for approximately 20 years, and then decreased gradually after the mid
231	2000s as a result of the regulation of air pollutant emissions throughout the North American
232	continent (Fig. 5b). The anthropogenic nitrogen pollutants are mostly transported eastward and
233	ultimately deposited in the western NAtl (Fig. 1).
234	Although there are limited data (time and space) on wet deposition of NO _x , the temporal
235	pattern based on measurements on the US Atlantic coast is comparable to that for the NO _x

236	emissions. For example, based on data obtained from the National Atmospheric Deposition
237	Program (NADP; http://nadp.sws.uiuc.edu/), there was an increase from the 1980s to early
238	1990s, and the level remained high for approximately 15 years and then decreased (Fig. 5b). This
239	trend of wet deposition of NO_x was commonly found at AND monitoring sites located along the
240	US Atlantic coast (Table S3).
241	The AND signals can be transported to the subsurface waters of the mesopelagic western
242	NAtl via two associated mechanisms. The first process involves production and bacterial
243	oxidation of organic matter. In these biological processes, new anthropogenic nitrogen added by
244	atmospheric deposition are removed from the surface via photosynthetic utilization by
245	phytoplankton and gravitational sinking of the resulting organic matter with N:P ratio higher
246	than 15:1 (Singh et al., 2013). These N-rich organic matters are subsequently remineralized by
247	bacteria at depth (Antia, 2005). This process involving well-known biological processes would
248	facilitate the transfer of high surface N:P signals to the subsurface waters. The second process
249	involves the physical transport of surface waters with greater N:P signals, which is a plausible
250	mechanism for generating the subsurface AND signals observed in the western NAtl. High
251	inputs of NO_x by atmospheric deposition occur over the coastal areas of the NAtl and are mostly
252	entrained in areas close to the northern edge of the western NAtl via the strong and persistent
253	western boundary current (i.e. the Gulf Stream, Fig. 1). Both active winter mixing and the
254	concurrent formation of mode water in this region would be expected to facilitate the transport of
255	surface waters loaded with high DIN_{xs} (and anthropogenic CO ₂ and CFCs) to the subsurface
256	layer, and to spread these DIN_{xs} -loaded waters southward (Palter et al., 2005).
257	The substantial increase in subsurface DIN_{xs} after 1997 (approximately equal to the pCFC-
258	12 ventilation year of 1982) at sites having greater inputs of AND (boxes 1-3 in Fig. 5a, and at

280

259	the BATS site) appears to coincide with the increasing wet deposition of NO_x from the US
260	continent, with a lag period of approximately 15 years. The time lag observed is approximately
261	equal to the ventilation age of the target subsurface waters in this region, which was estimated to
262	be 6-25 years based on the CFCs concentrations (Hansell et al., 2004; Hansell et al., 2007). The
263	time lag suggests that the physical mechanism is important in transporting the AND signals to
264	the subsurface waters, although the mismatch between the observed time lag and the ventilation
265	age of water masses may be due, at least in part, to the biological processes.
266	The rates of DIN _{xs} increase (0.19–0.33 μ mol kg ⁻¹ decade ⁻¹ ; boxes 1–3 in Fig. 5a) measured
267	in the western NAtl (reported in the preceding section) are equivalent to an increase of 78-135
268	mmol N m ^{-2} decade ^{-1} in the subsurface N inventory (200–600 m) of the western NAtl. This is
269	slightly higher than the increase in wet NO_x deposition (approximately 60 mmol N m ⁻² decade ⁻¹)
270	measured along the US east coast from the 1980s to the 2000s (Fig. 5b), but is broadly consistent
271	with the total NO _x fluxes (approximately 90 mmol N m^{-2} decade ⁻¹) if dry deposition is included
272	in the modeled and observed results (Dentener et al., 2006; Baker et al., 2010). We thus suggest
273	that anthropogenic nitrogen input is probably a main driver of DIN_{xs} increase in the western
274	basin. An anthropogenic influence manifested in oceanic nutrient dynamics having a lag period
275	of 15 years, has also been detected at 200-600 m in the Mediterranean Sea, where Moon et al.,
276	(2016) showed a three-phase temporal transition (a trend of increase-stability-decline) in DIN
277	concentration between 1985 and 2014; this was probably associated with corresponding changes
278	in anthropogenic nitrogen input.
279	The temporal trend of the nitrogen isotope record (CS- δ^{15} N) measured on the Bermuda

that the AND signals have been embedded in the coral $\delta^{15}N$ record. The CS- $\delta^{15}N$ record on the 281

coral skeleton is comparable to the trends of NO_x emission from the USA (Fig. S8), indicating

Bermuda coral reflects the annual biological response to the local AND signals in the surface
waters; hence, its trend may follow changes in anthropogenic NO _x input without a time lag. For
the western NAtl, the rates of DIN_{xs} increase we found are in agreement with those from the
earlier studies using different datasets and methodologies (Hansell et al., 2007; Landolfi et al.,
2008; Singh et al., 2013), but are lower than those observed in the NPO (0.30–1.20 μ mol kg ⁻¹
decade ^{-1} , Kim et al., 2014a). The different rates of seawater DIN _{xs} increase found between the
western NAtl and NPO appear to be consistent with the CS- δ^{15} N records in these two basins.
During the 20 th century, a small decline (-0.2‰) in CS- δ^{15} N was observed in corals from
Bermuda (Wang et al., 2018), whereas a greater decrease (-0.7‰) in CS- δ^{15} N was detected from
the South China Sea (Ren et al., 2017). The lower rates of seawater DIN_{xs} increase (or slower
decline in CS- δ^{15} N) in the NAtl were likely due to the lower rate of nitrogen emissions (also
indicating nitrogen deposition) from the North American continent (0.15 Tg N year ⁻¹ observed
from 1970 to 2000; EPA, 2000) than from northeast Asia (0.40 Tg N year ⁻¹ observed from 1980
to 2010; Liu et al., 2013). In this case, the recent trend of decreasing emission in anthropogenic
nitrogen from North America, as well as the decrease in wet nitrogen deposition observed along
the US east coast, may reverse the pattern of the increase in subsurface DIN_{xs} in the western
NAtl in the near future. Indeed, this reversed pattern appears to have emerged recently at the
BATS site (Figs. 3a and 5b), based on more time-resolved observations. Together, our findings
suggest that the AND has affected the nutrient dynamics in the western NAtl, although the
magnitude of this effect is relatively small, and its influence would be expected to become less
significant under a scenario of increased control of pollutant emissions.
3.3. Biogeochemical processes that may affect the ΔDIN_{xs} in the western North Atlantic

304 Ocean

305	Other biogeochemical processes may also affect the observed pattern of ΔDIN_{xs} in the
306	western NAtl. Nitrogen fixation contributes considerably to the total export production (1.3–3.8
307	mol C m ^{-2} year ^{-1} ; Lee, 2001) in oligotrophic gyres of the NAtl (Lee et al., 2002; Ko et al., 2018),
308	which could therefore generate the positive signals of DIN_{xs} in subsurface waters (Hansell et al.,
309	2004). The rate of N_2 fixation and the abundance of diazotrophs have been reported to be highest
310	(Luo et al., 2012; Benavides and Voss, 2015) in the subtropical gyre of the western NAtl (see
311	boxes 4–6 in Fig. 5a), however, the subsurface DIN_{xs} did not change significantly among the
312	repeat occupations of transects (Figs. 3 and S7a). No direct evidence for increasing activity of
313	diazotrophs in the NAtl is available (Mahaffey et al., 2005; Benavides and Voss, 2015). Contrary
314	to our expectation, the increase in subsurface DIN_{xs} was only found upstream of the subduction
315	zone (north of the hot spots for N_2 fixation; Figs. 3 and 5a). In this region (boxes 1–3) the
316	observed rate of N_2 fixation was 4.2 mmol m ⁻² year ⁻¹ (Luo et al., 2012), considerably lower than
317	the atmospheric NO _x deposition (10–40 mmol m^{-2} year ⁻¹ ; see Fig. 1). If N ₂ fixation mainly
318	drives the increase in subsurface DIN_{xs} in this region, its rate would have been expected to
319	increase by 2 to 3-fold during recent decades. Such an increase in N_2 fixation activity is highly
320	unlikely (Benavides and Voss, 2015). Moreover, if N2 fixation activity had increased during the
321	study period we would expect the DIP concentration decreases in the surface ocean and
322	concurrently increases below (Kim et al., 2014a), but this was not observed (Fig. 4). Therefore,
323	N_{2} fixation has probably not been a major factor leading to the increase in DIN_{xs} in the western
324	NAtl over the study period.
325	Remineralization of particulate and dissolved organic matters (POM and DOM) is another

326 potential source of subsurface DIN_{xs} in the NAtl, as a result of the high N:P ratios of organic

327 matters and the preferential remineralization of P from POM and DOM (Landolfi et al., 2008;

328	Lomas et al., 2010). The DON concentration in the subsurface waters in the western NAtl (near
329	the BATS site), however, remained unchanged during the period 1998–2011 (http://bats.bios.
330	edu/). Moreover, the N:P ratios in DOM and suspended POM obtained at 0–100 m at the BATS
331	site did not change between 2004 and 2012 (Singh et al., 2015). Likewise, we did not find any
332	discernible interannual changes in the N:P ratio of sinking particles collected between 150 and
333	300 m at the BATS site (Fig. S9). Thus, the change in subsurface DIN_{xs} in the western NAtl was
334	not primarily driven by variable N:P ratios of sinking POM. Taken together, these findings
335	suggest that DOM and POM remineralization has not contributed to the ΔDIN_{xs} in the subsurface
336	waters of the western NAtl during the periods in this study. Having excluded N_2 fixation and
337	remineralization of organic matters as key drivers, we hypothesize that the addition of AND has
338	been the major contributor to the recent increases in subsurface DIN_{xs} in the western NAtl.
339	3.4. Influences of climate variability on the ΔDIN_{xs} in the western North Atlantic Ocean
340	As a prevailing climate mode over the NAtl, the North Atlantic Oscillation (NAO) strongly
341	influences the formation of the subtropical mode water (STMW) in the western NAtl, which in
342	turn affects subsurface nutrient and DIN_{xs} concentrations in the downstream region (Bates and
343	Hansell, 2004; Palter et al., 2005). The STMW is known to form in areas south of the Gulf
344	Stream extension, and then primarily flows southward to the entire western basin; its intrusion to
345	the eastern basin has been suggested to be minor (Palter et al., 2005; Palter et al., 2011). The
346	formation of the STMW is generally enhanced when the NAO index becomes negative. During
347	this negative phase of the NAO, an increased contribution of low-nutrient water to the STMW
348	lowers the subsurface nutrient concentrations and DIN_{xs} in the subtropical gyre. In contrast,
349	
	during the positive phase of the NAO, the STMW formation becomes weaker, and thus the

- formation region (Palter et al., 2005). The winter (December–March) NAO index has been
- 352 mostly positive values since 1980, although its trend appeared to show an increase before the
- arly 1990s and to decrease slightly thereafter (Fig. S10). Contrary to the trend in this
- atmospheric forcing, our nutrient data showed no evident changes in the subsurface DIP in the
- downstream region (e.g. A22 and A20; p > 0.05, Student's t-test and ANOVA with Games-
- Howell test; Figs. 4 and S7b) over the past 3 decades, irrespective of changes in the NAO index.
- 357 These observations indicate that the basin-wide ΔDIN_{xs} are probably less likely controlled by a
- 358 persistent positive phase of the NAO. Time-series data further strengthened the conclusion
- drawn from the basin-scale data. For example, the decline in the Bermuda CS- δ^{15} N value was
- 360 accompanied by several superimposed decadal oscillations induced by the NAO (Wang et al.,
- 361 2018). Similarly, such oscillations appear to be imprinted in the time-series measurements of
- 362 subsurface DIN_{xs} at the BATS site (Fig. 5b). Nonetheless, the basin-wide Δ DIN_{xs} trends induced
- 363 by anthropogenic inputs of nitrogen are still visible.

364 **3.5.** Subsurface ΔDIN_{xs} trend in the eastern North Atlantic Ocean

- 365 There was an apparent decrease in subsurface DIN_{xs} in the eastern NAtl (e.g. A16N),
- 366 which is the opposite trend to that found in the western NAtl (Fig. 5a). The decreasing trend (-
- 367 0.40 μ mol kg⁻¹ decade⁻¹) in the subsurface DIN_{xs} in the eastern subpolar NAtl (45°N-60°N
- along A16N) has been more evident since the 2000s (Fig. 3c). A similar decrease in the
- subsurface (300–500 m) DIN between 1998 and 2013 was also found at a site (68.0°N, 12.7°W)
- 370 in the northern Iceland Sea, but little change in DIP was observed (Fig. S12). The
- 371 remineralization of DOM may play an important role (Kähler et al., 2010); however, due to
- insufficient time-resolved data, we could not confirm whether there was any decrease in the rate
- of DOM remineralization in the eastern subpolar NAtl. From 1999 to 2009, NO_x emission from

374	Europe has decreased by 31%, mainly owing to change in energy consumption from fossil fuels
375	to nuclear power (Vet et al., 2014). This decline in recent NO_x emission from Europe (the blue
376	solid line in Fig. S11) is a viable explanation for the decrease in subsurface DIN_{xs} in the eastern
377	subtropics. However, much of the NO_x derived from Europe is probably deposited to the
378	European coasts, because the prevailing westerly winds carry it eastward to the eastern European
379	continent (Fig. 1) (Baker et al., 2010). Moreover, the amounts of NO _x deposited onto the eastern
380	subpolar basin (< 10 mmol N m ^{-2} year ^{-1}) were found to be small (Fig. 1). In the extreme scenario
381	in which no such NO _x deposition occurred during the period of analysis, the lack of this NO _x
382	deposition would only account for $< 20\%$ of the total decline in subsurface DIN _{xs} in the eastern
383	subpolar NAtl (Fig. 2c). This suggests that the influence of European AND on seawater nutrient
384	dynamics in the eastern subtropical NAtl is minimal (Hansell et al., 2007).
385	A recent study reported that most N ₂ fixation occurs in the tropical NAtl (south of 24°N;
386	Marconi et al., 2017). The upper loop of the Atlantic meridional overturning circulation (AMOC)
387	acts as a passage through which nutrients are transported from the tropical regions to the
388	subpolar gyre (Pelegrí and Csanady, 1991; Williams et al., 2006; Moore et al., 2009). Therefore,
389	a decreasing rate of N_2 fixation is another likely explanation for the decreasing trend in
390	subsurface DIN_{xs} in the eastern NAtl. Indeed, the supply of iron and phosphorus from Africa to
391	the eastern tropical and subtropical NAtl has declined by approximately 10% per decade during
392	the period 1980–2008 (Foltz and Mcphaden 2008; Ridley et al., 2014), and was likely
393	accompanied by a reduction in the growth of diazotrophs in the eastern tropical NAtl (Mills et
394	al., 2004; Benavides et al., 2013). On the other hand, the decrease in the subpolar subsurface
395	DIN_{xs} occurred concurrently with decreases in temperature and salinity at the same water depth
396	in the subpolar region (Figs. 3c, S4c and S5c). These observations of concurrent cooling and

397	freshening were suggested to be associated with the fact that the strength of ocean circulation (as
398	well as heat transport) in the NAtl is decreasing, as a result of weakening of the AMOC since
399	2005 (Srokosz and Bryden, 2015; Robson et al., 2016). Therefore, the observed weakening in the
400	northward transport of tropical waters might in part contribute to a reduction in the DIN_{xs}
401	signature in the subpolar gyres of the eastern NAtl, as seen north of 45°N on A16N (Fig. 5a).
402	This result is consistent with a reduction in the subsurface DIN_{xs} observed in the north Iceland
403	Sea since 2005 (Fig. S12d). If this mechanism plays a governing role, changes in nutrient
404	supplies related to a reduction of the AMOC would have a large impact on biological export and
405	the marine ecosystem (Schmittner, 2005). Although compelling, our observations are not a direct
406	confirmation that decline in N_2 fixation rate and variations in the AMOC are the main cause of
407	the decreasing trend in subsurface DIN_{xs} in the eastern subpolar region. Therefore, this finding
408	remains a working hypothesis that needs confirmation using more time-resolved data in future
409	studies.

410

411 **4. Conclusions and implication**

412 Our results support that AND has been a cause of the temporal variations in seawater DIN_{xs} in the subsurface waters of the western NAtl during the recent 3 decades. In the eastern 413 414 subtropical NAtl, the decline in NO_x emission from Europe, and possibly a decrease in the N₂ 415 fixation rate, are likely drivers of subsurface DIN_{xs} change. However, in the subpolar gyres of the eastern NAtl the subsurface DIN_{xs} has decreased since the 2000s, as a result of a possible 416 417 decrease in N₂ fixation. Recent changes in ocean circulation (e.g., the AMOC) might also play a 418 role. Ocean circulation did not directly influence the DIN_{xs} in the water column, but it rather 419 redistributed the DIN_{xs} over the basin in the NAtl. This mechanism requires confirmation based

- 420 on new data. Our study also shows that both human activities and climate variations together
- 421 exert a discernable impact on the decadal variations of DIN_{xs} in the subsurface waters of the
- 422 NAtl.
- 423 Human activities may have begun to influence the concentrations and stoichiometry of
- 424 nutrients, at least in the western NAtl, and profound changes have been verified on the western
- 425 NPO (Kim et al., 2014a) and Mediterranean Sea (Moon et al., 2016). These findings indicate
- 426 global-scale changes in marine biogeochemistry, caused by human activities that are
- 427 simultaneously influencing carbon sequestration and greenhouse gas emission (e.g., N₂O) (Duce
- 428 et al., 2008). Continuing monitoring of changes in DIN_{xs} in the NAtl are needed to determine
- 429 whether the levels have followed the recent decrease in AND, particularly in the USA. Such
- 430 external perturbations could also alter the close homeostasis of the marine N cycle and its
- 431 feedback to climate (Gruber and Deutsch, 2014).

432	Supporting information
433	Detailed description of transects used in the analysis, and additional tables and figures.
434	
435	Author contribution
436	JYTY and KL designed the present work and drafted the manuscript. JYTY and JYM did
437	the data analysis. JZZ, ISH, JSL, and EL contributed to discussion and interpretation of the data.
438	
439	Competing interests
440	We have no conflict of interest to declare.

441 Acknowledgements

- 442 We wish to thank all of scientists who contributed to data used in this study. This work
- 443 was supported by the National Institute of Fisheries Science (R2020044) and by "Management of
- 444 Marine Organisms causing Ecological Disturbance and Harmful Effects" funded by the Ministry
- 445 of Ocean and Fisheries (MOF). Additional support for JYTY was provided by "The Principal's
- 446 Fund" of Xiamen University (ZK1114). JZZ was supported by NOAA Ocean and Atmospheric
- 447 Research. The scientific results and conclusions, as well as any views or opinions expressed
- 448 herein, are those of the authors and do not necessarily reflect the views of NOAA or the US
- 449 Department of Commerce. This is the State Key Laboratory of Marine Environmental Science
- 450 contribution NO. melpublication2020387.

451 **References**

- 452 Altieri, K. E., Fawcett, S. E., Peters, A. J., Sigman, D. M., and Hastings, M. G.: Marine biogenic
- 453 source of atmospheric organic nitrogen in the subtropical North Atlantic, Proc. Natl. Acad.
- 454 Sci., 113, 925-930, http://doi.org/10.1073/pnas.1516847113, 2016.
- 455 Altieri, K. E., Hastings, M. G., Peters, A. J., Oleynik, S., and Sigman, D. M.: Isotopic evidence
- 456 for a marine ammonium source in rainwater at Bermuda, Global Biogeochem. Cycles, 28,
- 457 1066-1080, http://doi.org/10.1002/2014GB004809, 2014.
- 458 Anderson, L. A., and Sarmiento, J. L.: Redfield ratios of remineralization determined by nutrient
- data analysis, Global Biogeochem. Cycles, 8, 65-80, http://doi.org/10.1029/93GB03318,
- 460 1994.
- 461 Antia, A. N.: Solublization of particles in sediment trap, revising the stoichiometry of mixed
- 462 layer export, Biogeosciences, 2, 189-204, http://doi.org/10.5194/bg-2-189-2005, 2005.
- 463 Baker, A. R., Lesworth, T., Adams, C., Jickells, T. D., and Ganzeveld, L.: Estimation of
- 464 atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale
- 465 field sampling: Fixed nitrogen and dry deposition of phosphorus, Global Biogeochem. Cycles,
- 466 24, GB3006, http://doi.org/10.1029/2009GB003634, 2010.
- Bates, N. R., and Hansell, D. A.: Temporal variability of excess nitrate in the subtropical mode
- 468 water of the North Atlantic Ocean, Mar. Chem., 84, 225-241,
- 469 http://doi.org/10.1016/j.marchem.2003.08.003, 2004.
- 470 Benavides, M., and Voss, M.: Five decades of N₂ fixation research in the North Atlantic Ocean,
- 471 Front. Mar. Sci., 2, 40, http://doi.org/10.3389/fmars.2015.00040, 2015.
- 472 Benavides, M., Arístegui, J., Agawin, N. S. R., Cancio, J. L., and Hernàndez-León, S.:
- 473 Enhancement of nitrogen fixation rates by unicellular diazotrophs vs. *Trichodesmium* after a
- 474 dust deposition event in the Canary Islands, Limnol. Oceanogr., 58, 267-275,
- 475 http://doi.org/10.4319/lo.2013.58.1.0267, 2013.
- 476 Dentener, F., Drevet, J., Lamarque, J. F., Bey, I., Eickhout, B., Fiore, A. M., Hauglustaine, D.,
- 477 Horowitz, L. W., Krol, M., Kulshrestha, U. C., Lawrence, M., Galy-Lacaux, C., Rast, S.,
- 478 Shindell, D., Stevenson, D., Van Noije, T., Atherton, C., Bell, N., Bergman, D., Butler, T.,
- 479 Cofala, J., Collins, B., Doherty, R., Ellingsen, K., Galloway, J., Gauss, M., Montanaro, V.,
- 480 Müller, J. F., Pitari, G., Rodriguez, J., Sanderson, M., Solmon, F., Strahan, S., Schultz, M.,
- 481 Sudo, K., Szopa, S., and Wild, O.: Nitrogen and sulfur deposition on regional and global

- 482 scales: A multimodel evaluation, Global Biogeochem. Cycles, 20, GB4003,
- 483 http://doi.org/10.1029/2005gb002672, 2006.
- 484 Doney, S. C., Mahowald, N., Lima, I., Feely, R. A., Mackenzie, F. T., Lamarque, J. -F., and
- 485 Rasch, P. J.: Impact of anthropogenic atmopheric nitrogen and sulfur deposition on ocean
- acidification and the inorganic carbon system, Proc. Natl. Acad. Sci., 104, 14580-14585,
- 487 http://doi.org/10.1073/pnas.0702218104, 2007.
- 488 Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone, D. G., Cornell, S.,
- 489 Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells, T., Kuypers, M. M.,
- 490 Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies,
- 491 A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M.,
- 492 Ulloa, O., Voss, M., Ward, B., and Zamora, L.: Impacts of atmospheric anthropogenic
- 493 nitrogen on the open ocean, Science, 320, 893-897, http://doi.org/10.1126/science.1150369,
 494 2008
- 495 EPA: National Air Pollutant Emission Trends, 1900–1998, Office of Air Quality Planning and
 496 Standards, Research Triangle Park, 2000.
- Fanning, K. A.: Influence of atmospheric pollution on nutrient limitation in the ocean, Nature,
 339, 460-463, http://doi.org/10.1038/339460a0, 1989.
- Foltz, G. R., and Mcphaden, M. J.: Trends in Saharan dust and tropical Atlantic climate during
 1980 2006, Geophys. Res. Lett., 35, L20706, http://doi.org/10.1029/2008GL035042, 2008.
- 501 Fowler, D., Pyle, J. A., Raven, J. A., and Sutton, M. A.: The golbal nitrogen cycle in the twenty-
- 502 first century, Philos. Tranhs. R. Soc. Lond. B Biol. Sci., 368, 1-13,
- 503 http://doi.org/10.1098/rstb.2013.0164, 2013.
- 504 Galloway, J. N., Howarth, R. W., Michaels, A. F., Nixon, S. W., Prospero, J. M., and Dentener,
- 505 F. J.: Nitrogen and phosphorus budgets of the North Atlantic Ocean and its watershed,
- 506 Biogeochemistry, 35, 3-25, http://doi.org/10.1007/BF02179823, 1996.
- 507 Gruber, N.: The Marine Nitrogen Cycle, Overview and Challenges, in: Nitrogen in the Marine
- 508 Environment (2nd Edition), edited by: D. G. Capone, D. A. Bronk, M. R. Mulholland and E.
- 509 J. Carpenter, Academic Press, San Diego, 1-50, https://doi.org/10.1016/B978-0-12-372522-
- 510 6.00001-3, 2008.
- 511 Gruber, N., and Deutsch, C. A.: Redfield's evolving legacy, Nat. Geosci., 7, 853-855,
- 512 http://doi.org/10.1038/ngeo2308, 2014.

- 513 Gruber, N., and Sarmiento, J.: Global patterns of marine nitrogen fixation and denitrification,
- 514 Global Biogeochem. Cycles, 11, 235-266, http://doi.org/10.1029/97GB00077, 1997.
- 515 Hansell, D. A., Bates, N. R., and Olson, D. B.: Excess nitrate and nitrogen fixation in the North
- Atlantic Ocean, Mar. Chem., 84, 243-265, http://doi.org/10.1016/j.marchem.2003.08.004,
 2004.
- 518 Hansell, D. A., Olson, D. B., Dentener, F., and Zamora, L. M.: Assessment of excess nitrate
- development in the subtropical North Atlantic, Mar. Chem., 106, 562-579,
- 520 http://doi.org/10.1016/j.marchem.2007.06.005, 2007.
- 521 Hastings, M. G., Sigman, D. M., and Lipschultz, F.: Isotopic evidence for source changes of
- 522 nitrate in rain at Bermuda, J. Geophys. Res. Atmos., 108, 4790,
- 523 http://doi.org/10.1029/2003JD003789, 2003.
- 524 Hydes, D., Aoyama, M., Aminot, A., Bakker, K., Becker, S., Coverly, S., Daniel, A., Dickson,
- 525 A., Grosso, O., Kerouel, R., van Ooijen, J., Sato, K., Tanhua, T., Woodward, M., and Zhang,
- 526 J.: Determination of dissolved nutrients (N, P, Si) in seawater with high precision and inter-
- 527 comparability using gas-segmented continuous flow analysers, in: The GO-SHIP Repeat
- 528 Hydrography Manual: A Collection of Expert Reports and guidelines. IOCCP Report No 14,
- 529 ICPO Publication Series No. 134, version 1, UNESCO/IOC., 87, 2010.
- 530 Jickells, T., and Moore, C. M.: The importance of atmospheric deposition for ocean productivity,
- Annu. Rev. Ecol. Evol. Syst., 46, 481-501, http://doi.org/10.1146/annurev-ecolsys-112414054118, 2015.
- Jickells, T. D., Buitenhuis, E., Altieri, K., Baker, A. R., Capone, D., Duce, R. A., Dentener, F.,
- 534 Fennel, K., Kanakidou, M., LaRoche, J., Lee, K., Liss, P., Middelburg, J. J., Moore, J. K.,
- 535 Okin, G., Oschlies, A., Sarin, M., Seitzinger, S., Sharples, J., Singh, A., Suntharalingam, P.,
- 536 Uematsu, M., and Zamora, L. M.: A reevaluation of the magnitude and impacts of
- anthropogenic atmospheric nitrogen inputs on the ocean, Global Biogeochem. Cycles, 31,
- 538 289-305, http://doi.org/10.1002/2016GB005586, 2017.
- 539 Kähler, P., Oschlies, A., Dietze, H., and Koeve, W.: Oxygen, carbon, and nutrients in the
- 540 oligotrophic eastern subtropical North Atlantic, Biogeosciences, 7, 1143-1156,
- 541 http://doi.org/10.5194/bg-7-1143-2010, 2010.
- 542 Key, R. M., Olsen, A., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr,
- 543 A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F.

- 544 F., and Suzuki, T.: Global Ocean Data Analysis Project, Version 2 (GLODAPv2),
- 545 (ORNL/CDIAC-162, ND-P093), Carbon Dioxide Information Analysis Center, Oak Ridge
- 546 National Laboratory, US Department of Energy, 2015.
- 547 Kim, I.-N., Lee, K., Gruber, N., Karl, D. M., Bullister, J. L., Yang, S., and Kim, T.-W.:
- 548 Increasing anthropogenic nitrogen in the North Pacific Ocean, Science, 346, 1102-1106,
- 549 http://doi.org/10.1126/science.1258396, 2014a.
- 550 Kim, T.-W., Lee, K., Najjar, R. G., Jeong, H. D., and Jeon, H. J.: Increasing N abundance in the
- northwestern Pacific Ocean due to atmospheric nitrogen deposition, Science, 334, 505-509,
- 552 http://doi.org/10.1126/science.1206583, 2011.
- 553 Kim, T.-W., Lee, K. Duce, R. and Liss, P.: Impact of atmospheric nitrogen deposition on
- 554 phytoplankton productivity in the South China Sea, Geophys. Res. Lett., 41,
- 555 http://doi.org/10.1002/2014GL059665, 2014b.
- 556 Knapp, A. N., Hastings, M. G., Sigman, D. M., Lipschultz, F., and Galloway, J. N.: The flux and
- isotopic composition of reduced and total nitrogen in Bermuda rain, Mar. Chem., 120, 83-89,
- 558 http://doi.org/10.1016/j.marchem.2008.08.007, 2010.
- 559 Ko, Y. H., Lee, K., Takahashi, T., Karl, D. M., Kang, S.-H., and Lee, E.: Carbon-based estimate
- of nitrogen-fixation-derived net community production in N-depleted ocean gyres, Global
- 561 Biogeochem. Cycles, 32, 1241-1252, http://doi.org/10.1029/2017GB005634, 2018.
- Landolfi, A., Oschlies, A., and Sanders, R.: Organic nutrients and excess nitrogen in the North
- Atlantic subtropical gyre, Biogeosciences, 5, 1199-1213, http://doi.org/10.5194/bg-5-11992008, 2008.
- Lee, K.: Global net community production estimated from the annual cycle of surface water total
 dissolved inorganic carbon, Limnol. Oceanogr., 46, 1287-1297,
- 567 http://doi.org/10.4319/lo.2001.46.6.1287, 2001.
- Lee, K., Karl, D. M., Wanninkhof, R., and Zhang, J.-Z.: Global estimates of net carbon
- production in the nitrate-depleted tropical and subtropical oceans, Geophys. Res. Lett., 29,
- 570 1907, http://doi.org/10.1029/2001GL014198, 2002.
- 571 Liu, X. Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W., Goulding,
- 572 K., Christie, P., Fangmeier, A., and Zhang, F.: Enhanced nitrogen deposition over China,
- 573 Nature, 494, 459, http://doi.org/10.1038/nature11917, 2013.

- 574 Lomas, M. W., Burke, A. L., Lomas, D. A., Bell, D. W., Shen, C., Dyhrman, S. T., and
- 575 Ammerman, J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved
- 576 organic phosphorus (DOP), Biogeosciences, 7, 695-710, http://doi.org/10.5194/bg-7-695-
- 577 2010, 2010.
- 578 Luo, Y. W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet,
- 579 S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J.,
- 580 Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K.,
- 581 Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M.,
- 582 Marañón, E., McGillicuddy Jr, D. J., Moisander, P. H., Moore, C. M., Mouriño-Carballido,
- 583 B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault,
- 584 P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A.,
- 585 Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of
- 586 diazotrophs in global ocean, abundance, biomass and nitrogen fixation rates, Earth Syst. Sci.
- 587 Data, 4, 47-73, http://doi.org/10.5194/essd-4-47-2012, 2012.
- Mahaffey, C., Michaels, A. F., and Capone, D. G.: The conundrum of marine N₂ fixation.
 American J. Sci. 305, 546-595. http://doi.org/10.2475/ajs.305.6-8.546, 2005.
- 590 Marconi, D., Sigman, D. M., Casciotti, K. L., Campbell, E. C., Alexandra Weigand, M., Fawcett,
- 591 S. E., Knapp, A. N., Rafter, P. A., Ward, B. B., and Haug, G. H.: Tropical Dominance of N₂
- 592 Fixation in the North Atlantic Ocean, Global Biogeochem. Cycles, 31, 1608-1623,
- 593 http://doi.org/10.1002/2016GB005613, 2017.
- 594 Mills, M. M., Ridame, C., Davey, M., La Roche, J., and Geider, R. J.: Iron and phosphorus co-
- 595 limit nitrogen fixation in the eastern tropical North Atlantic, Nature, 429, 292-294,
- 596 http://doi.org/10.1038/nature02550, 2004.
- 597 Moon, J.-Y., Lee, K., Tanhua, T., Kress, N., and Kim, I.-N.: Temporal nutrient dynamics in the
- 598 Mediterranean Sea in response to anthropogenic inputs, Geophys. Res. Lett., 43, 5243-5251,
- 599 http://doi.org/10.1002/2016GL068788, 2016.
- 600 Moore, C. M.: Diagnosing oceanic nutrient deficiency, Philos. Trans. Royal Soc. A, 374,
- 601 20150290, http://doi.org/10.1098/rsta.2015.0290, 2016.
- Moore, C. M., Mills, M. M., Achterberg, E. P., Geider, R. J., LaRoche, J., Lucas, M. I.,
- 603 McDonagh, E. L., Pan, X., Poulton, A. J., Rijkenberg, M. J. A., Suggett, D. J., Ussher, S. J.,

- and Woodward, E. M. S.: Large-scale distribution of Atlantic nitrogen fixation controlled by
- 605 iron availability, Nat. Geosci., 2, 867-871, http://doi.org/10.1038/ngeo667, 2009.
- Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith,
- E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M.,
- Mahowald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito,
- M. A., Thingstad, T. F., Tsude, A., and Ulloa, O.: Processes and patterns of oceanic nutrient
- 610 limitation, Nat. Geosci., 6, 701-710, http://doi.org/10.1038/ngeo1765, 2013.
- 611 Okin, G. S., Baker, A. R., Tegen, I., Mahowald, N. M., Dentener, F. J., Duce, R. A., Galloway, J.
- 612 N., Hunter, K., Kanakidou, M., Kubilay, N., Prospero, J. M., Sarin, M., Surapipith, V.,
- 613 Uematsu, M., and Zhu, T.: Impacts of atmospheric nutrient deposition on marine productivity,
- Roles of nitrogen, phosphorus, and iron, Global Biogeochem. Cycles, 25, GB2022,
- 615 http://doi.org/10.1029/2010GB003858, 2011.
- 616 Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr,
- A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F.
- 618 F., and Suzuki, T.: The Global Ocean Data Analysis Project version 2 (GLODAPv2) an
- 619 internally consistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297-323,
- 620 http://doi.org/10.5194/essd-8-297-2016, 2016.
- 621 Palter, J. B., Lozier, M. S., and Barber, R. T.: The effect of advection on the nutrient reservoir in
- the North Atlantic subtropical gyre, Nature, 437, 687-692,
- 623 http://doi.org/10.1038/nature03969, 2005.
- Palter, J. B., Lozier, M. S., Samiento, J. L., and Williams, R. G.: The supply of excess phosphate
 across the Gulf Stream and the maintenance of subtropical nitrogen fixation, Global
- 626 Biogeochem. Cycles, 25, GB4007, http://doi.org/10.1029/2010GB003955, 2011.
- 627 Pelegrí, J. L., and Csanady, G. T.: Nutrient transport and mixing in the Gulf Stream, J. Geophys.
- 628 Res. Oceans, 96, 2577-2583, http://doi.org/10.1029/90JC02535, 1991.
- Ren, H., Chen, Y.-C., Wang, X. T., Wong, G. T. F., Cohen, A. L., DeCarlo, T. M., Weigand, M.
- 630 A., Mii, H.-S., and Sigman, D. M.: 21st-century rise in anthropogenic nitrogen deposition on a
- 631 remote coral reef, Science, 356, 749-752, http://doi.org/10.1126/science.aal3869, 2017.
- 632 Ridley, D. A., Heald, C. L., and Prospero, J. M.: What controls the recent changes in African
- mineral dust aerosol across the Atlantic?, Atoms. Chem. Phys., 14, 5735-5747,
- 634 http://doi.org/10.5194/acp-14-5735-2014, 2014.

- 635 Ríos, A. F., Resplandy, L., García-Ibáñez, M. I., Fajar, N. M., Velo, A., Padin, X. A.,
- 636 Wanninkhof, R., Steinfeldt, R., Rosón, G., and Pérez, F. F.: Decadal acidification in the water
- 637 masses of the Atlantic Ocean, Proc. Natl. Acad. Sci., 112, 9950-9955,
- 638 http://doi.org/10.1073/pnas.1504613112, 2015.
- 639 Robson, J., Ortega, P., and Sutton, R.: A reversal of climatic trends in the North Atlantic since
- 640 2005, Nat. Geosci., 9, 513-517, http://doi.org/10.1038/ngeo2727, 2016.
- 641 Schmittner, A.: Decline of the marine ecosystem caused by a reduction in the Atlantic
- overturning circulation, Nature, 434, 628-633, http://doi.org/10.1038/nature03476, 2005.
- 643 Singh, A., Lomas, M. W., and Bates, N. R.: Revisiting N₂ fixation in the North Atlantic Ocean:
- 644 Significance of deviations from the Redfield Ratio, atmospheric deposition and climate
- variability, Deep Sea Res. Part II, 93, 148-158, http://doi.org/10.1016/j.dsr2.2013.04.008,
 2013.
- Singh, A., Baer, S. E., Riebesell, U., Martiny, A. C., and Lomas, M. W.: C, N, P stoichiometry
 at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean,
- 649 Biogeosciences, 12, 6389-6403, http://doi.org/10.5194/bg-12-6389-2015, 2015.
- 650 Srokosz, M. A., and Bryden, H. L.: Observing the Atlantic Meridional Overturning Circulation
- yields a decade of inevitable surprises, Science, 348, http://doi.org/10.1126/science.1255575,
 2015.
- 653 St-Laurent, P., Friedrichs, M. A. M., Najjar, R. G., Martins, D. K., Herrmann, M., Miller, S. K.,
- and Wilkin, J.: Impacts of atmospheric nitrogen deposition on surface waters of the western
- North Atlantic mitigated by multiple feedbacks, J. Geophys. Res. Oceans, 122, 8406-8426,
- 656 http://doi.org/10.1002/2017JC013072, 2017.
- Takahashi, T., Broecker, W. S., and Langer, S.: Redfield ratio based on chemical data from
 isopycnal surfaces, J. Geophys. Res., 90, 6907-6924,
- 659 http://doi.org/10.1029/JC090iC04p06907, 1985.
- 660 Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V. C.,
- 661 Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S.,
- Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., Rao, P. S. P., and Reid, N. W.: A
- global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base
- 664 cations, organic acids, acidity and pH, and phosphorus, Atmos. Environ., 93, 3-100,
- 665 http://doi.org/10.1016/j.atmosenv.2013.10.060, 2014.

- Wang, X. T., Cohen, A. L., Luu, V., Ren, H., Su, Z., Haug, G. H., and Sigman, D. M.: Natural
- forcing of the North Atlantic nitrogen cycle in the Anthropocene, Proc. Natl. Acad. Sci., 115,
- 668 10606-10611, http://doi.org/10.1073/pnas.1801049115, 2018.
- 669 Williams, R. G., Roussenov, V., and Follows, M. J.: Nutrient streams and their induction into the
- 670 mixed layer, Global Biogeochem. Cycles, 20, GB1016,
- 671 http://doi.org/10.1029/2005GB002586, 2006.
- Woosley, R. J., Millero, F. J., and Wanninkhof, R.: Rapid anthropogenic changes in CO₂ and pH
- in the Atlantic Ocean: 2003–2014, Global Biogeochem. Cycles, 30, 70-90,
- 674 http://doi.org/10.1002/2015GB005248, 2016.
- Yang, J. Y. T., Hsu, S. C., Dai, M. H., Hsiao, S. S. Y., and Kao, S. J.: Isotopic composition of
- water-soluble nitrate in bulk atmospheric deposition at Dongsha Island, sources and
- 677 implications of external N supply to the northern South China Sea, Biogeosciences 11, 1833-
- 678 1846, http://doi.org/10.5194/bg-11-1833-2014, 2014.
- 679 Yang, S., and Gruber, N.: The anthropogenic perturbation of the marine nitrogen cycle by
- atmospheric deposition, Nitrogen cycle feedbacks and the ¹⁵N Habor-Bosch effect, Global
- 681 Biogeochem. Cycles, 30, 1418-1440, http://doi.org/10.1002/2016GB005421, 2016.
- 682 Zamora, L. M., Landolfi, A., Oschlies, A., Hansell, D. A., Dietze, H., and Dentener F.:
- Atmospheric deposition of nutrients and excess N formation in the North Atlantic,
- 684 Biogeosciences, 7, 777-793, http://doi.org/10.5194/bg-7-777-2010, 2010.
- Zhang, J.-Z., Mordy, C. W., Gordon, L. I., Ross, A., and Garcia, H. E..: Temporal trends in deep
 ocean Redfield ratios, Science, 289, 1839-1839,
- 687 http://doi.org/10.1126/science.289.5486.1839a, 2000.
- 688 Zhang, J.-Z., Wanninkhof, R., and Lee, K.: Enhanced new production observed from the diurnal
- 689 cycle of nitrate in an oligotrophic anticyclonic eddy, Geophys. Res. Lett., 28, 1579-1582,
- 690 http://doi.org/10.1029/2000GL012065, 2001.

691 Figure captions

- 692 Figure 1. (a) Nutrient sampling locations (black dots) in the North Atlantic Ocean (NAtl).
- All datasets from the meridional (A22, A20 and A16N) and zonal (A05) cruises were
- 694 collected in the GLODAPv2 product and CLIVAR database (see text). The red dashed line
- 695 indicates the region of STMW formation, and the solid arrows indicates streamlines of high
- transport in the western NAtl (i.e., the Gulf Stream, modified from Palter et al., 2005). The
- 697 color scale indicates the model-derived atmospheric NO_x deposition into the NAtl for 2000
- 698 (Dentener et al., 2006).
- 699 Figure 2. The vertical distributions of DIN_{xs} in the upper 1500 m for difference cruises along
- three meridional transects are shown in, (a) A22, (b) A20, and (c) A16N, respectively. The
- insets in (a–c) show the average rates (with 95% confidence limits) of ΔDIN_{xs} at 200–600 m
- and 1200–1500 m averaged for each $3^{\circ}-8^{\circ}$ latitude interval between GO-SHIP (2010s) and
- 703 WOCE (late 1980s to 1990s) time periods along each transect (see Table S1).
- 704 Figure 3. Temporal trends of DIN_{xs} anomalies (dots) for the corresponding latitude interval
- for the subsurface potential density intervals σ_{θ} along the three meridional transects (a) A22,
- 706 (b) A20, and (c) A16N in the NAtl. Data from A05 obtained in 2010 at three crossover sites
- 707 are also shown (triangles). $mDIN_{xs}$ values in parentheses indicate the mean DIN_{xs} in GO-
- 508 SHIP dataset. The selected σ_{θ} intervals are typically located at the depth intervals of 200–600
- m with DIN_{xs} maximum along each transect. Note that the selected σ_{θ} interval (= 27.2–27.6)
- 710 in the subpolar region along A16N ($45^{\circ}N-60^{\circ}N$) is different from that in the subtropical
- 711 region, as σ_{θ} for 200–600 m depth becomes larger in the high-latitude region. Besides repeat
- 712 cruises of these transects, the data sets from other cruises with similar tracks (Fig. 1) in the
- 713 sub-regions were included for comparison. The DIN_{xs} values were corrected by the changes
- 714 in AOU to remove the contribution from remineralization of organic matter (see text). The
- 715 data points connected by the dashed lines indicate that the ΔDIN_{xs} were statistically

- significant in these regions (p < 0.05, Student's t-test and ANOVA with Games-Howell test).
- 717 Otherwise, the data that were statistically unchanged are not connected by the dashed lines.
- 718 The smoothed trend using the 5-year rLowess filter for DIN_{xs} anomalies of the STMW at the
- same depth ranges of the BATS site (near A22) is also shown (the gray shading in a). The
- 720 gray dashed lines indicate DIN_{xs} anomaly equals to zero.
- 721 Figure 4. As for Figure 3, except for DIP anomalies. mDIP values in parentheses indicate the
- 722 mean DIP in GO-SHIP dataset. The gray dashed lines indicate DIP anomaly equals to zero.
- 723 Date from the BATS site are also included in (a).
- Figure 5. (a) The rates of ΔDIN_{xs} in the subsurface waters (200–600 m) along the four
- transects between GO-SHIP and WOCE time periods (see Table S1). The study area is
- 726 divided into 10 subregions of 10° longitude by 5°–15° latitude along the transects A22
- 727 (boxes 1–2), A20 (boxes 3–5), part of A05 (box 6) and A16N (boxes 7–10). The statistically
- significant changes (Student's t test and ANOVA with Games-Howell test, p < 0.05) are
- 729 marked with the superscript "t" for the box numbers. (b) Temporal variations of DIN_{xs}
- 730 anomalies (open dots and their fitting curve as black curve) in the western NAtl in which the
- right subsurface DIN_{xs} increased significantly (boxes 1–3 in a). Trend in DIN_{xs} anomalies in the
- subsurface waters at the BATS site is shown in gray shading (the same as Fig. 3a). To ensure

```
733 consistent comparisons between atmospheric N deposition rates and seawater DIN<sub>xs</sub>
```

anomalies, the seawater DIN_{xs} anomaly values were shifted by approximately 15 years. The

735 15-year shift corresponded to the mean time period that had elapsed since a given subsurface

- 736 water mass had last been in contact with the atmosphere prior to subduction. The year that the
- 737 subsurface water mass in the NAtl last had contacted the atmosphere was calculated using the
- 738 CFCs contents in that subsurface water. The history of observed atmospheric wet deposition
- 739 (WD) of NO_x from the US Atlantic coast. Orange curve and its shading show the 5-year
- 740 moving average values and the range of the 95% confidence intervals, respectively (the

- 741 monitoring sites are presented in Table S3). Blue curve indicates the NO_x emission from the
- 742 USA. The NO_x emission strongly correlates with the WD of NO_x (r = 0.93, p < 0.01).

743 **Figure 1**

747 Figure 3

749 Figure 4

751 Figure 5

